Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 176(2): 125-39, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16005649

RESUMO

Hyperpolarized (129)Xe can be used as a sensor to indirectly detect NMR spectra of heteronuclei that are neither covalently bound nor necessarily in direct contact with the Xe atoms, but coupled through long-range intermolecular dipole-dipole interactions. To reintroduce long-range dipolar couplings the sample symmetry has to be broken. This can be done either by using an asymmetric sample arrangement, or by breaking the symmetry of the spin magnetization with field gradient pulses. Experiments are performed where only a small fraction of the available (129)Xe magnetization is used for each point, so that a single batch of xenon suffices for the point-by-point acquisition of a heteronuclear NMR spectrum. Examples with (1)H as the analyte nucleus show that these methods have the potential to obtain spectra with a resolution that is high enough to determine homonuclear J couplings. The applicability of this technique with remote detection is discussed.


Assuntos
Algoritmos , Lasers , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Xenônio/análise , Isótopos de Xenônio/química , Transdutores
2.
Phys Rev Lett ; 93(16): 160801, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15524968

RESUMO

We report the use of an atomic magnetometer based on nonlinear magneto-optical rotation with frequency-modulated light to detect nuclear magnetization of xenon gas. The magnetization of a spin-exchange-polarized xenon sample (1.7 c m(3) at a pressure of 5 bars, natural isotopic abundance, polarization 1% ), prepared remotely to the detection apparatus, is measured with an atomic sensor. An average magnetic field of approximately 10 nG induced by the xenon sample on the 10 cm diameter atomic sensor is detected with signal-to-noise ratio approximately 10 , limited by residual noise in the magnetic environment. The possibility of using modern atomic magnetometers as detectors of nuclear magnetic resonance and in magnetic resonance imaging is discussed. Atomic magnetometers appear to be ideally suited for emerging low-field and remote-detection magnetic resonance applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...